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I. THE CROSS ASSEMBLER LANGUAGE

A. CHARACTER SET: The cross assembler accepts EBCDIC characters,
including ASCII: '[')']',r{".},'

B. TIDENTIFIERS: Identifiers may be from one to eight (8)
characters. Characters beyond the eighth will be ignored by the
assembler. Identifiers conform to the following:

l. First character must be ALPHA(BETIC). wupper or lower
case; or the dollar sign “$°.

2+ The second and following characters, if any. may be
! ALPHA, NUMERIC (°0°-°9°), the dollar sign. or the underscore
(l_l)'

C. RESERVED IDENTIFIERS: Certain identifiers are reserved for
special use of the assembler and are not available to the
programmer as ordinary identifiers. The reserved identifiers are
all upper case alphabetic characters. |

D« COMMENTS: Comments may be included on any assembler statement
by prefacing the comment with a period (°.°) or vertical bar i
(“1°)« A comment may be the only item on a 1line. and totally
blank lines may be included in the input.

E. STATEMENT FORMAT: Statements are coded entirely within card
ceclumns 1-72 and no continuation is allowed. The contents of
columns 73-80 is printed on the listing but otherwise ignoreds.

[<LABEL ID>:] [<T-STATEMENT>] [;<A-STATEMENT>[;<UPDATE PTR>]]

Machine code statements follow the basic form given above,
with numerous minor variations., of course. Blanks, beyond a
single one used to delimit other quantities. are ignored and
coding is free form within a statement.

If no a-statement is coded then it and the semicolon
preceding are omitted., and this also precludes coding any <UPDATE
PTR>« Likewise if the t-statement is not coded. then it is ‘
omitted with the a- statement beginning as shown with a semicolone.

One or more label identifiers may be attached to a statement
by coding each before other items on a given line. and following
each LABEL I.D. with a colon (°:°%). If a LABEL(s) is left
'hanging', (i.e« coded on a line containing no machine statement)

- e -




then the label is assigned the current value of the location
counters

——

F. IDENTIFIER TYPES: The assembler defines different types of
identifiers as follows:

TYPE DESCRIPTION RANGE OF VALUES
ABS ABSOLUTE NUMERIC = o |
SYMB SYMBOLIC LABEL psng2™

: REG HARDWARE REGISTER RO.R1.R2.R3.R4.R5.R6.RT
MASK CONDITICNAL MASK aLL 2" or 2% (?)-(?)-(?)

G« LITERALS: The assembler accepts literal constants coded in
any of the forms belowe. All 1literal constants are 1like an
identifier type ABS. except * which is SYMB.

>DECIMAL nnnnnn 0. 2% 1}

>HEX X ‘nnnnnnnn’ (< 8 HEX DIGITS)
>0CTAL 0 ‘nnn-n’ (< e

>BINARY B (D(])---(§)" (£ 32 BINARY DIGITS)
>CHARACTER C‘ccee” (< 4 CHARACTERS)

(NOTE: Character constants are converted to ASCII and packed
right justified in 8 bit fields. No parity bit is given so
the high bit of all bytes is zero.)

>LOCATION COUNTER - [TYPE IS SYMB]

(NOTE: The ¥ gives the location counter value or the address
of the current instruction being processed.)




He. EXPRESSIONS: Literals and identifiers of types ABS and
may appear in expressions as follows (and only as below):

UNARY -: --ABS NEGATE
UNARY +: ++ABS NULL (NO ACTION)
BINARY - ABS, -- ABSa YIELDS ABS RESULT

SYMB, -- SYMB, YIELDS ABS RESULT
BINARY +: ABSy ++ ABSe YIELDS ABS RESULT
ABS ++ SYMB YIELDS SYMB RESULT
SYMB, ++ SYMB, ERROR
Multiple operators are evaluated from left to right.
parentheses may be useds

I. PSEUDO-OPS:

l. DC - DEFINE CONSTANT

DC <EXPRESSION>

SYMB

No

This statement reserves one word of storage- The statement

may have a label, whose value would be the address of
constant. The <EXPRESSION> may be ABS or SYMB.

2. BLK - BLOCK

BLK <ABS-EXPR>

Reserve <ABS-EXPR> words of storage. The label,

the

if

coded. is the address of the first word. The expression must

be ABS.

3« ORG - ORIGIN LOCATION COUNTER
ORG <EXPRESSION>

Begin assembling code (starting with next statement)
location <EXPRESSION>., which may be ABS or SYMB. It is

at

poor

form to 1label an ORG statement although the assembler

probably would allow it




4. EQU EQUATE SYMBOL

<REG>
<IDENTIFIER> EQU <EXPRESSION>

<MASK>

<IDENTIFIER>

NOTE: MASKS are defined using ‘MASK’ function as
follows:

MASK(KEIGHTBITS>,<NOT>.<ZERO>,<CODES>)

The four fields are all ABS and <EIGHTBITS>
is 0 £255 while the other fields are 0 or 1
onlye

<EIGHTBITS> IS THE TEST MASK
<NOT> =1 . INVERTED SENSE
<ZERO>=1 . TEST INVERTED (FOR ZERO)
<CODES>=z1. TEST INDICATOR CODES
(INSTEAD OF CONDITION CODES)

The EQU <IDENTIFIER> must not have been used as a 1label
identifier nor may it appear at the 1left in another EQU.
The <IDENTIFIER> is given the type and value of the quantity
on the right of the EQU. A register, mask define,
expression, or identifier may appear on the right in the EQU.
A restriction exists that any identifier appearing at the
right. either alone or in an expression. must have been given
its value earlier in the programe.

5« END
END [<LABEL>]
The END PSUEDO-OP marks the last physical statement of

the program. The optional <LABEL> specifies a point to
transfer control to begin execution-




Je T - STATEMENT
l. ARITHMETIC }
To store result & set codes:

+ !

Raf := Raf Y+c+ Rbf
-b- LITERAL 1%
To only set codes:

+
Raf ) +c+ Rbf

-b- LITERAL L b

2. LOGICAL
Raf := 0 or -1 X0 %
LITERAL or LABEL ¥o%
NOT <0P2>
Raf <LOG> <Q0P2>
Rbf

= MAY BE USED FOR ‘NOT’
<0P2>: Rbf or LITERAL x2%
<LOG>: AND or OR or NAND or

NOR or XOR or XNOR

NOTE: Raf = Rbf DOES A °LTR®. THAT IS
LOADS AND SET CONDITION CODES

¥1*% LITERAL is assembled short if 0 < LIT < 7 and an
A-STATEMENT is coded, otherwise it is long.

#2% LITERAL or LABEL with value 0 or -1 are assembled
short., other values generate a long literal form.




1

3+ SHIFT.ROTATE

SINGLE:
Raf <S-0P> [Rbf
LITERAL #1%
DOUBLE:
Raf, Raf@l <s-0P> {Rbr i
LITERAL #1%

<S-0P>: << LEFT LOGICAL
<@ LEFT ROTATE
<< RIGHT LOGICAL
@< RIGHT ARITHMETIC
4. EXTENDED
TRANSFER
i Raf = Rbf [NOTE: CONDITION CODES NOT SET]

DIVIDE STEP

DIV (Raf,Rbf)
MULTIPLY STEP
e MUS (Raf,Rbf)
EXCESS SIX
; X$6 (Raf,Rbf)

- ———————————————————— —— - ———— —————— — —— - — - —— - —————————————— -

¥1%# LITERAL is assembled short if 0< LIT <7 and an
A-STATEMENT is coded. otherwise it is longe.




5« EXTRACT/INSERT

Raf (KLIST>) = Rbf (<n, >:<ng>) jCLEAR i
INSERT

KLIST> is one or more of the following separated
by comnmas

ae $142 & <ig> position iy through i, ol L

b <i,> position i,

Rbf is rotated assuming the <ng> of Rbf will be matching
the last i argument (furtherest to -ight) of <LIST> for
Rafs

If ‘CLEAR’ is coded an EXTRACT is done otherwise an
INSERT« The ACTION is to assign the bit field given by
<n,> : <ng> in Rbf to Raf into those bits given by <LIST>
and leave the the others the same (or clear them if
“CLEAR )+

6. CONDITIONAL

([NOT] <MASK> => [;] <A-STATEMENT>)

The entire statement 1is surrounded by a set of
parentheses, including the <A-STATEMENT>. The <MASK>
must bs either the °‘MASK(i g1 51 1 ) or an IDENTIFIER
with TYPE MASK: The test may ée inverted by specifying
‘NOT . NORMAL if the test is satisfied the <A-STATEMENT>

t is EXECUTED, otherwise it is skippeds

S S ———————————— e

¥1* If i,> i, then positions 31 to i and i to O are selected
(it wraps around). Remember not all possible masks can
be represented in the 18 bit literal field.




Ke

A-STATEMENT

l. STORE REGISTER

M(<EXPRESSION> ) = Ref
2. LOAD wZGTSTER

Ref = M(KEXPRESSION> )
3. LOAD IMMEDIATE

Ref = <EXPRESSION>

[ this includes <LABEL> s and type SYMB]

4. INDIRECT ACCESS

M(Ref) = X(Rdf)
Ref = X(Rdf)
X(Ref) = Rdf
X(Ref) = M(RdF)
Ref = M(Rdf‘)
M(Ref) = Rdf
Ref = Rdf

NOTE :
Either
Ref

}
Rdf {2}
Ref (%

s Ref
s BdP
¢ Ref

5. POINTER-MOD AND LOOP
ENE Reb
DEC Ref
Ref = Ref{ }Rdf

NOTE:

5
( ltnot3 i<I o |[=] {RO{ JLIT

<LABEL>

To do POINTER UPDATE include

JLALIE (oX
LIET or
LREE ¢

RAf = Rdf {¥} LIT

To do CONDITIONAL LOOP include

)

If <LABEL> is used must be equlvalent to RO X
where -8 < LIT £ 7

LIT,




6«

CONDITIONAL BRANCH

([NOT] <MASK> [=>] ZRO{-’-'}Lit
<LABEL>

Branch part is a above. <MASK> the same as

T-STATEMENT,

}

for condition




APPENDIX

A

Ba

PREDEFINED MASKS

ZERO

NEGATIVE

POSITIVE

OVERFLOW

CARRY CARRY BIT = 1

HIGH HIGH BIT = 1

LOW LOW BIT = 1

SAME ALL, BITS 0 or 1

0DD PARITY IS ODD

BUSY CPU BUS ACCESS IS BUSY

RESERVED WORDS

RO INSERT

R1 CLEAR |

R2 ]

R3 MUS

R4 DIV E

R5 XS6

R6

R7 DEC ‘
INC 3

AND _ |

OR ZERO ;

NAND POSITIVE

NOR NEGATIVE ;

XOR OVERFLOW |

XNOR CARRY f

NOT HIGH |
LOW

MASK SAME

£QU 0DD

BLK BUSY |

END §

DC %

ORG !

A+ |

M+

+ only when directly followed by “(°
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